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We introduce a product on an effect algebra. We prove that every product effect algebra
with the Riesz decomposition property (RDP), is an interval in an Abelian unital inter-
polation po-ring, and we show that the category of product effect algebras with the RDP
is categorically equivalent with the category of unital Abelian interpolation po-rings.
In addition, we show that every product effect algebra with the RDP and with 1 as a
product unity is a subdirect product of antilattice product effect algebras with the RDP.
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1. INTRODUCTION

Effect algebras entered mathematics in 1994 because of Foulis and Bennett
(1994) as partial algebras with a partially defined additienThey are addi-
tive counterparts to D-posets introduced bggka and Chovanec (1994), where
the subtraction of comparable elements is a primary notion. They met interest
of mathematicians and physicists while they give a common base for algebraic
as well as fuzzy set properties of the systéfi) of all effects of a Hilbert
spaceH, i.e., of all Hermitian operatoré on H such thatO < A < I, whereO
and| are the null and the identity operators bh In many cases, effect alge-
bras are intervals in unital po-groups, e&(H) is the interval in the po-group
B(H) of all Hermitian operators onH; this group is of great importance for
physics.

We recall that every MV-algebra of Chang (1958) can also be understood as an
effect algebra. For example,lil is a maximal set of mutually commuting effects
on a separable Hilbert spat¢, thenM can be converted into an MV-algebra:
There is a system of Borel measurable functiégs: [0, 1] — [0, 1], and a fixed
effect operatog € M such thatA = fA(Ag). The MV-operations oM are then
defined byA® B = (maxX fa + fg, 1})(Ag). A’ = | — A, and moreover, we can
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define in a natural way the produét- B of AandB via A- B := (fa - fg)(A),
A, B € M, wheref, - fg is a usual product of functiong, and fg.

Inspired by that, in the present note we introduce product effect algebras.
We use similar notions for MV-algebras that were studied in Deemskij and
RieCan (1999) and Di Nola and Dvurefiskij (2001). We show that every product
effect algebra with the Riesz decomposition property (RDP) is isomorphic with
the interval in an Abelian unital interpolation po-ring (Section 2). We give some
examples of products, including the product on perfect effect algebras (Section 3).
In Section 4, we show that the category of product effect algebras with the RDP
is categorically equivalent with the category of Abelian unital interpolation po-
groups. Finally, we show that every product effect algebra with the RDP and with
1 as a product unity is a subdirect product of antilattice product effect algebras
with the RDP (Section 5).

2. PRODUCT EFFECT ALGEBRAS

An effect algebras a partial algebr& = (E; +, 0, 1) with a partially defined
operatior+ and two constant elements 0 and 1 such that, fa,dl c € E,

(i) a+ bis defined inE iff b 4 a is defined, and in such the casg- b =
b+ a;
(i) a+ b, (@a+ b)+ care defined ifb + canda + (b + c) are defined, and
in such caseg+b)+c=a+ (b+c);
(i) foranya € E,there exists aunique elemenite E suchthat +a’ = 1,
and
(iv) if a+ 1is defined inE, thena = 0.

If we definea < biff there exists an elemeste E such that 4 ¢ = b, then
< is a partial ordering, and we write:= b — a.

Let a be any element of an effect algelifaand n an integern(> 0). We
define recurrently

Oa := 0, la=a, (n+la=na+a, n>1,

supposing thata andna + a are defined irE.

For example, if G, u) is an Abelian unital po-group with a strong unj¢ and
if I'(G,u) :={g € G : 0< g <u}is endowed with the restriction of the group
addition+, then (G, u); +, 0, u) is an effect algebra. More about effect algebras
can be found in DvureEnskij and Pulmannav(2000).

Let E and F be two effect algebras. A mappirig: E — F is said to be
a homomorphisnif (i) h(a 4+ b) = h(a) + h(b) whenevera + b is defined inE,

2An elementu € G™ is said to be atrong unitfor a po-groupG, if given an elemeng € G, there is
an integen > 1 such that-nu < g < nu.
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and (i) h(1) = 1. A bijective homomorphisrh such thah~! is homomorphism
is said to be afmsomorphisnof E andF.

A product on an effect algebraE = (E;+, 0,1) is any total binary
operation- on E such that, for alla, b, c € E, the following holds: Ifa+ b is
defined inE, thena-c+b-candc-a+c-bexistinE and

(@a+b)y-c=a-c+b-c
c-(@+b)y=c-a+c-b,

and we say thakE with a product. is a product effect algebraand we write
E = (E;+, -, 0,1). An element of a product effect algebr& is said to be a
unity,ifa-u=u-a=aforanya e E.

A product- on E is

(i) associativef (a-b)-c=a-(b-c),a,b,ce E;
(i) commutativef a-b=b-a,a,be E.

It is worth saying that if is a product orE, then

(i) a-0=0=0-4a;
(iv) if a<b,thenforanyce E,a-c<b-candc-a=<c-b.

Property (iii) follows easily from the followinga-0=a-(0+0)=a-0+
a - 0, and the cancellation property giveés0 = 0. Similarly, 0- a = 0.

We recall that every effect algebEapossesses at least one commutative and
associative product, namely teroproduct, i.,ea-b=0foralla,b € E.

We recall that gpo-ring is a ring R; +, -, 0) such that (i) R; +, 0) is an
additive Abelian po-group, and-a > 0 anda-a > 0 foranyc,a > 0. Ifuis a
strong unit forR, i.e., for anya € R there is an integem > 1 such thag < nu,
and ifu - u < u, then the effect algebra

E=T(R,u)

is a product effect algebra with the productvhich is the restriction of the ring
product- to E x E; the product is commutative or associative éi{R, u) when-
eversois onR.

For example, if R; +, -, 0) is the ring of the real numbers, then the standard
interval [0, 1] = I'(R, 1) is a product effect algebra.

We say that an effect algebEasatisfies (i) theRiesz interpolation property
(RIP), if, for all x¢, X2, y1, ¥2 in E, x; <y; for all i, j implies there exists an
elementz € E such thatx; <z <y; for all i, j; (ii) the Riesz decomposition
property (RDP), if x < y; + y» implies that there exist two elements, x, with
X1 < y1 andx, < y, such thaix = x; + Xo.

We recall that (1) IifE is a lattice, thenE has trivially the RIP; the con-
verse is not true as we see below. )has the RDP iff (Dvureénskij and
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Pulmannowa; 2000, Lemma 1.7.5); + X, = y1 + Y- implies there exist four
elementscyy, C1o, Co1, Co2 € E such thatX; = €11+ C12, Xo = Co1 + Coo, V1 =
C11 + Co1, andy, = €12 + Coo. (3) the RDP implies the RIP, but the converse is
not true (e.g. ifE = L(H), the system of all closed subspaces of a Hilbert space
H, thenE is a complete lattice but without the RDP). On the other hand, every
finite poset with the RIP is a lattice.

We recall that a posetH; <) is anantilattice if only comparable elements
of E have a supremum (infimum). It is clear that any linearly ordered poset is an
antilattice and every finite effect algebra with the RIP is a lattice.

There exists an effect algebra with RIP which is not a lattice:

Example 2.1. Let G be the additive grouf®? with the positive cone of allx; y)
suchthat eithex = y = 0orx > Oandy > 0. Thenu = (1, 1) is a strong unit for
G. The effect algebr& = I'(G, u) is an antilattice having the RIP and the RDP
but E is not a lattice. Moreover, if we defin&y(, y1) - (X2, ¥2) := (X1 - X2, Y1 * Y2),

for (X1, y1), (X2, ¥2) € E, then- is a commutative and associative productin
and with unityu.

A partially ordered Abelian group3; +, 0) is said to satisfy the RDP pro-
vided, givenx, y1, o in GT such thatx < y; + y,, there existx;, x, in G*
such thatx = x! + x, and xj < y; for eachj. This condition is equivalent to
that by Goodearl (1986, proposition 2.1) with the following two equivalent
conditions:

(a) Givenxy, X2, y1, ¥2 in G such tha; < y; for alli, j, there existz in G
such that, <z < y; foralli, j.

(b) Givenxy, Xz, Y1, Y2 in GT such thatx; + x> = y1 + Y, there existzy s,
Z12, 221, Z22IN GT such thal; = z1 + z, for eachi andy; = z1j + zy;
for eachj.

According to Goodearl (1986), a gro@with the RDP is said to be thaterpo-
lation group

It is clear that if G, u) is a unital interpolation group, theld = I'(G, u) is
with the RDP.

We recall that by auniversal groupfor an effect algebré&E we mean a
pair (G, y) consisting of an additive Abelian grou and a G-valued
measurey : E — G (i.e., y(a+ b) = y(a) + y(b) whenevera + b is defined
in E) such that the following conditions hold: (j)(E) generatess. (ii) If H
is an additive Abelian group angd : E — H is an H-valued measure, then
there is a group homomorphisgi* : G — H such thatp = ¢* oy. Accord-
ing to Foulis and Bennett (1994), every effect algebra possesses a universal

group.
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Ravindran (1996) (Dvuenskij and Pulmannay 2000, Theorem 1.17.17)
proved the following important result.

Theorem 2.2. Let E be an effect algebra with tiRRDP. Then there exists a unital
interpolation group(G, u) with a strong unit u such thaf (G, u) is isomorphic
with E, and there is a G-valued injective measursuch tha{G, y) is a universal
group for E.

In DvureCenskij (Theorem 5.8) we have proved that the category of effect
algebras with the RDP is categorically equivalent to the category of unital Abelian
interpolation po-groups: Lef Az pp be the category of effect algebras with the
RDP whose objects are effect algebras and morphisms are homomorphisms of
effect algebras, and 1&{ZG be the category of unital interpolation po-groups
(G, u) with a fixed strong uniti and whose morphisms are homomorphisms of
unital po-groups, i.e., positive homomorphisms of unital po-groups that preserve
fixed strong units.

Theorem2.3. The mappind” : UZG — £ Arpp definesthe categorical equiv-
alence of the category#ZG of unital interpolation po-groups and the category of
effect algebras with thRDP.

In addition, suppose that h I'(G, u) — I'(H, v) is a homomorphism of
effect algebras with thRDP, then there is a unigue homomorphism (G, u) —
(H, v) of unital po-groups such that & I'(f), and

() if his surjective, soisf;
(ii) if hisinjective, soisf.

We now present a crucial result for our investigation.

Theorem 2.4. Let(E; +, -, 0, 1) be a product effect algebra with tfDP. Then

there exists a unique (up to isomorphism) unital po-ring (Rsatisfying the

RDP with the product. and with uu < u such that E= I'(R, u) and¢(a - b) =

¢(@) - ¢(b). whereg is an isomorphism of E ontd(R, u) preserving the product.
If - is commutative or associative, so ish R.

Proof: Let E be an effect algebra with a product. According to Theorem 2.2,
there is a unital groupR, u) with a strong unitu satisfying the RDP, and an
isomorphismyp from E ontoI'(R, u). We can define the producbn I'(R, u) as
follows

#(@) - ¢(b) :=¢(a-b), abekE.
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Becausd (R, u) generates the positive cofe” of R, ¢ preserves all existing-
in R, and we see thatis a product ol (R, u).

Giveng € R" there existay, ..., a, € E such thaig = Zi”:l di)- For any
¢(c), wherec € E, we define

g-¢9(c)=¢(@-c)+---+¢(a - c). (2.1)

We claim that (2.1) is defined unambiguously. Indeedy i ZT‘:l ¢(b;), for
someby, ..., bm € E, because of the RDP, there exist elements E such that
a =) . cjandb; =Y, ¢ foralli,1<i <n,andallj, 1< j <m. Then

=
3
3
=

z¢( c)=i;¢((i0”) )
ziqs(bj ©)

which proves thaton Rt x I'(R, u) is correct. We now extendio R x I'(R, u)
as follows: Ifg = g1 — 00, 01, 92 € R, then

g-¢(c) i=01-¢(c) — g2 ¢(C).
Since ifgy — g = hy — haforg, hy € R, i =1, 2, theng; + hy = hy + gy, by
(2.1) we have
(91 + h2) - ¢(c) = (h1 + 02) - ¢(C),
g1 - ¢(c) + h2- ¢(c) = h1 - ¢(C) + g2 - ¢(C),
01-¢(C) — G2 - ¢(C) = hy- ¢(c) + hz - ¢(C).

Now letc € R*. Thenc = ¢(c1) + ... + ¢(Cs), whereg, e M, t =1,..., s. We
extend- to R x R* as follows

g-ci=) g-¢(c) geG.

t=1
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If c=>"\,_; ¢(dw), using the RDP, we have as above

D g ) =) g-¢(dw).
t=1 w=1

It is clear that the “multiplication™ can be extended to the whok x R: If
C = C; — Gy, Wherecy, &> € RT, let

g-ci=g-c—g-C

It is evident that ifg, h € R™, theng-h € R*, andu-u < u, and because of
property (ii), - is associative orR, so that R; +, -, 0) is a po-ring with a strong
unit u, which proves the theorem.

The commutativity or associativity of the product on the riRépllows from
its construction. 0

We present now some effect algebras that admit products.

Proposition 2.5. If e is unity of a product effect algebra E, thee<l. Moreover,
1is unity for- if and only if, foranyac E,a-1>aandl-a > a.

Proof: Let e be unity for the product. Then- 1 <1=1.-e<1-1, which
proves 1: 1=1. Letac E. Thena-1>a-e=aand1 a>e-a=a.Inad-
dition,a+a =1=1-1=(a+a)-1=a-1+a-1>a+ a, which entails
a-1=a. By symmetry, we have 1a = a for anya € E, and in addition 1=
l-e=e

Now assume that for ang € E, a-1>a and 1-a>a. Then 1=a+
a<a-l4a-1=(@+a)-1=1-1<1, which proves that 1 is unity
for-onkE. O

Proposition 2.6. A finite effect algebra E, which is a lattice and with RBP,
admits a product such that a1=a=1-a for any ac E if and only if E
is a Boolean algebra, i.e., wa =1 for any ac E. If this is the case, then
a-b=anbekE.

Proof: Every lattice effect algebra with the RDP can be converted into an MV-
algebra. Therefore, the assertion follows from Dwareskij and Pulmannev”
(2000, Theorem 5.3.17). O

3. PRODUCT ON PERFECT EFFECT ALGEBRAS

Inthe present section, we show that we can even define a product on perfect ef-
fect algebras. Such effect algebras were introduced and studied in
DvureCenskij.
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Let G be a directed Abelian po-group and define the lexicographical product
G(Z) := 7 xex G, (3.1)

whereZ is the group of all integers. Then the element (1, 0) is a strong unit in the
po-groupG(Z) and

E(G) := I'(G(Z), (1, 0)) (3.2)

is an effect algebra. Every elememt E(G) is of the form eithera = (1, —Q)
ora = (0, g), whereg € G™. In addition, if G is a directed interpolation group,
thenG(Z) is an interpolation group (Goodearl, 1986, corrolary 2.12) B(@)
satisfies the RIP.

An ideal of an effect algebrd& is a nonempty subsédt of E such that (i)
xeE,yel,x<yimply x e |, and (i) ifit X,y € | andx + vy is defined in
E,thenx + vy € |. Anideall is said to be th®iesz idealf x € |,a,b € E, and
X < a+ b, there exishy, b; € | such thak < a; + b; anda; <aandb; <b.

For example, ifE is with the RDP, then any ideal & is Riesz.

A proper ideall of an effect algebrd& is said to bemaximalif it is not a
proper subset of another proper ideakofBy Zorn's lemmaE possesses at least
one maximal ideal, and le¥{(E) be the set of all maximal ideals &. We define
theradical of E, RadE), via

RadE) = N{l : | € M(E)}.

An elementa is said to banfinitesimalif nais defined inE for any integer
n > 1, and denote by Infinif) the set of all infinitesimals oE. Then (i) Oe
Infinit(E), (i) if b € E, a € Infinit(E), andb < a, thenb < Infinit(E), and (iii) 1
¢ Infinit(E). By Proposition 4.1 of Dvuregnskij if E is an effect algebra satisfying
the RDP, then

Infinit(E) € Rad). (3.3)

Since it can happen that in (3.3) we have the proper inclusion, according to
Dvurecenskij, an effect algebra with the RDP is said to have thad-propertyif
in (3.3) we have the equality. In Dvureriskij, we have introduced perfect effect al-
gebras: We say that an effect algeBravith the Rad-property iperfectif, for any
elementa € E, eithera € RadE) or & € RadE). According to Dvureénskij,
(Proposition 5.3), every perfect effect algeliais of the form (3.2) for some
directed Abelian interpolation po-group.

We say thaG™ of a po-grougG is Archimedearif, for somea, b € G™ with
na<bforanyn>1,a=0.
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Proposition 3.1. Let E be a perfect effect algebra and define a binary operation.
as follows. For ab € Rad(), let

a-b=0,
a-b=a,
a -b=h,
a-b=(a+b). (3.4)

Then- is a commutative product on E such thath=a = 1-aforany ac E.

Let E=T'(Z x1ex G, (1, 0)) and let G* be Archimedean. Then on E there
is a unigue product such that a 1 =a = 1-a for any ae E; this product is
defined by (3.4).

Proof: Since RadE) N Rad(E) = @, we see thatis correctly defined by (3.4),
and it is easy to verify that it is a product in question®n

Leta andb be two element of Rad). Thennbis defined inE for any integer
n > 1, and by Dvureénskij, (Proposition 5.1), we have

a=a-1l=a-((nb)+ (nb))=n(a-b)+a-(nb) >n(a-b).

The Archimedeanicity of5* entails thata-b=0. Hencea=a-b+a-b' =
ab’. Similarya=(b'-a)+(b-a)=Db'-a,anda’ =a’ -b'+a -b'=a -b +
b, which givesa’ - b¥ = (a + b)'. O

Proposition 3.2.

Let E be an effect algebra with tiRDPsatisfying the Rad-property such that
RadE) is Archimedean, i.e., if n& b for any n> 1 and for some k= Rad(),
thena= 0. If - is a product on E such thatal = a = 1-a forany ac E, then,
for any a b € Rad(E), (3.4) holds.

Proof: Thefirst three identities follow the same ideas as the proof of Proposition
3.1. For the last one we have

l=(a+a)-(b+b)=a-b+a-b'+a-b+a-b'=(@+hb)+ @ -b),
which entails that’ - b’ = (a + b)'. O

Remark 3.3. It is worth recalling that if an effect algebia satisfying the RDP

and the Rad-property has an Archimedean radical, then there is a unique binary
operation: (RadE) U Rad(E)) x (RadE) U Rad(E)) — RadE) U RadE)’,

which is commutative and associative and foraalb, c € RadE) U RadE) we
have@+b).-c=a-c+b.c,a-1=a;itisdefined via(3.4). On the other hand
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it does not mean thatcan be extended to a product on the whBlesatisfy-
inga-1=a=1-a for anya e E. for example, ifE is a finite lattice, then
RadE) = {0}, and- can be extended ifE is a Boolean algebra (Proposition
2.6). An extension of is possible, e.g., iE is a perfect effect algebra with an
Archimedean radical (Proposition 3.1).

4. PRODUCT EFFECT ALGEBRAS AND CATEGORICAL
EQUIVALENCE

In this section, we show that the category of product effect algebras with the
RDP is categorically equivalent with the category of Abelian unital interpolation
po-rings.

Denote byPROD¢ 4 the category of product effect algebras, i.e., its ob-
jects are product effect algebras, and morphisms are homomorphisms of effect
algebras also preserving. We denote7dythe category of associative unital in-
terpolation po-ringsR, u) with a distinguished strong unitsuch thau - u < u,
and its morphisms are homomorphisms of po-groups that preserve. and the distin-
guished strong units. We denote By a map fromR into PROD¢  defined by
I'r((R;+,-,0,<,u)) := (T'(R,u); +, -, 0,u), andI'z (f) := f | I'(R, u).

Proposition 4.1. 'y is a faithful and full functor froniR to PRODg¢ 4.

Proof: Let h; andh, be two morphisms fromRK; +, -, 0, <, u) into (R; +
-, 0, <, ) such that"z (h;) = I'r(hy). Thenhy(a) = hy(a) for anya € T'(R, u).
Sincel'(R, u) generatedR™ and R, we have thah;(g) = h,(g) for anyg € R,
which proves thal'x is faithful.

To prove thaf" is a full functor, suppose thdtis a morphism froni"(R, u)
into I'(R, U). Sincel'(R, u) generateR, due to the RDPf can be uniquely
extended to a group homomorphisifrom Rinto R'.

We show thatf preserves the producin R.

Leta,b € R" There existay, ..., an, by, ..., by € T'(R, u) such thata =
a+---+a, andb=by+---+ by, Thena~b:2{‘=12’j“=1aj -bj and g -
bAj e I'(R, u). quculate f(a- b)A= Zi“fl Z{“:Al fla-b) =1, >0, f@)-
f(by) = (X f@)) - (X7Ls f(by)) f(a) - f(b).

If now a,b € R, thena =a; — a, andb = b; — by, Whereal, ao, by, bz €
RT. Thenf(a b) = f(al by — a1 b, —ay-b —I— ap - bz) = f(a1 bl) — f(al
o) — f(az by) + f(az bp) = f(ar)- f(by) — faw) - f(b2) — f(a)- f(by) +
f(a) - f(b) = f(a)- f(b). )

Consequently, we have proved thiais a morphism fromR; +, -, 0, <, u)
into (R; +, -, 0, <, U) such thal"z (f) = f. O
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We are now ready to present the main statement of the present section.

Theorem 4.2. The functol™r defines a categorical equivalence of the category
R of unital associative interpolation po-rings with a strong unit u such thatiu
u and the categorPROD¢ 4 of product effect algebras.

Proof: According to MacLane (1971, Theorem 1V.4.1), to prove thatis an
equivalence of the categories in question, it is necessary and sufficient to show
thatT' is faithful and full, and each obje& from PROD¢ 4 is isomorphic to
'z ((R;+, -, 0, <, u)) for some objectR; +, -, 0, <, u) in R.

According to Proposition 4.1} is faithful and full, and by Theorem 2.4,
there exists an object +, -, 0, <, u) in R such thatl'z ((R; +, -, 0, <, u)) is
isomorphic toE. This proves the theorem. O

5. SUBDIRECT PRODUCT OF PRODUCT EFFECT ALGEBRAS

In the present section, we show that every product effect algebra with the
RDP and with 1 as a product unity is a subdirect product of antilattice product
effect algebras with the RDP. To show that, we give some results on ideals and
guotient effect algebras.

Let- be a product on an effect algelita We say that anideall of E is an-
idealof Eifa e | andb € Eentaila-b e | andb-a e I.If 1is a product unity,
then every ideal ok is a- ideal of E.

Let P be a proper ideal dE. We define arelationrp onE viaa ~p biff a —
e=h — f forsomeg, f € P. Accordingto Dvureénskij and Pulmanna(2000,
Section 3.1.2). we have thatp is an equivalence such that 6+ b € E, a; +
b; € E,a~p a;,b~p byimply (a+ b) ~p (a1 + b1), (i) a ~p bimpliesa’ ~p
b, (i) a+ b € E, c ~p aimply there exists an elemedte E such thatd ~p
bandd+ceE, (iv)a+b,a;+ by € E,a ~p,a(as + by) ~p (a+ b) imply
b; ~p b. If we definea/P :=[a] :=[a]p :={b€ E : b~p a}, thenE/P :=
{[a]p : a € E} is an effect algebra, whera][+ [b] = [c] iff there exista; €
[a], by € [b], c1 € [c] such thata; + b; = ¢;. As the constant elements B/ P
we take [0] and [1].

We recall that

[alp <[blpiNnE/P <« there existsy € [a]p such thata; < b. (5.1)

We say that an idedP of an effect algebr& with the RDP isprimeif, for
allidealsl andJ of E, | N J < Pimplies| € P orJ € P. We denote byP(E)
the set of all prime ideals dt.

Let a be a nonzero element Bf By Zorn’s lemma, there exists an ideal
not containing a and which is maximal with respect to this property. Such an ideal
is said to be aalueof ain E.
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According to Dvureénskij, (i) every value is a prime ideal &, (i) E/P is
an effect algebra with the RDP whene\Riis a proper ideal oE with the RDP,
and (iii) E/P is an antilattice effect algebra# is prime.

Proposition5.1. Let P be aproperideal of a product effectalgebEa +, -, 0, 1)
withtheRDP. Ifa; ~p apand by ~p by, thena - by ~p &, - bp. Inaddition, E/P
is a product effect algebra with the induced produdefined via

[a]lp - [b]lp :=[a-b]p, a,beE, (5.2)

and the canonical mapping f E — E/P given by {a) =[a]p,ac E, is a
surjective homomorphism preserving all existing joins, meets, and the product
in E.

Proof: Therearee, f,u,v € Psuchthat; —e=a, — fandb; —u=b, —v.
Then

(@—¢€)-(by—u)=(a— f) (b —V),
a-(by—u)—e-(by—u)=a-(bp—v)— f-(b2—V),
a-b(@a-ut+e-(by—u)=a-bp—(a-v+ f-(b2—v)).

Sincex :=a-u+e-(bp—u)e Pandy:=a,-v+ f - (b, —Vv) € P, we have
a;-bp—x=ay-bp—vy,ie,a - by ~p a - by. Therefore, the product ok/P
defined by (5.2) is a product in question.

The rest is now clear; see also Dveeaskij (Proposition 6.9). O

Let {Ej}ic; be an indexed system of effect algebras. The Cartesian product
[lic; Ei can be organized into an effect algebra with the partial addition defined
by coordinates. Each; is with the RDP iff so ig[ [; E;. If every E; is a product
effect algebra, then so [d; E;, where the product is defined by coordinates.

We say that an effect algebra isabdirect producof effect algebrasE; }i¢,
if there is an injective homomorphisrh : E — [],., Ei such that, for every
j € lmj, of is a surjective homomorphism frofa onto E;, wherer; is the jth
projection off [; Ei ontoE;. In an analogical manner we define a subdirect product
of product effect algebras assuming that the funcfigereserves also the product
in E, and everyr; o f is a surjective homomorphism of effect algebras preserving
product.

Theorem5.2. Every product effect algebi&; +, -, 0, 1)with theRDPhavingl
as a product unity is a subdirect product of antilattice product effect algebras with
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the RDP. In addition, we can find an injective homomorphism into the subdirect
product that preserves all existing meets, joins, and the product in E.

Proof: According to Dvureénskij (Theorem 7.2), every effect algebra with the
RDP is a subdirect product of antillatice effect algedagP : P € P(E), P #

E}, and each of them is with the RDP. The corresponding injective mapping
f : E— []p E/P is defined viaf (a) = ([a]p)pep(e), a € E.

According to Proposition 5.1, evefy/ P is a product effect algebra. In addi-
tion, the mapping preserves all existing meets, joins (see Deereskij, Theorem
7.2]), and the product i, andrp o f isa surjective homomorphism froEionto
E/P preserving. O
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