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We introduce a product on an effect algebra. We prove that every product effect algebra
with the Riesz decomposition property (RDP), is an interval in an Abelian unital inter-
polation po-ring, and we show that the category of product effect algebras with the RDP
is categorically equivalent with the category of unital Abelian interpolation po-rings.
In addition, we show that every product effect algebra with the RDP and with 1 as a
product unity is a subdirect product of antilattice product effect algebras with the RDP.
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1. INTRODUCTION

Effect algebras entered mathematics in 1994 because of Foulis and Bennett
(1994) as partial algebras with a partially defined addition+. They are addi-
tive counterparts to D-posets introduced by Kˆopka and Chovanec (1994), where
the subtraction of comparable elements is a primary notion. They met interest
of mathematicians and physicists while they give a common base for algebraic
as well as fuzzy set properties of the systemE(H ) of all effects of a Hilbert
spaceH , i.e., of all Hermitian operatorsA on H such thatO ≤ A ≤ I , whereO
and I are the null and the identity operators onH . In many cases, effect alge-
bras are intervals in unital po-groups, e.g.,E(H ) is the interval in the po-group
B(H ) of all Hermitian operators onH ; this group is of great importance for
physics.

We recall that every MV-algebra of Chang (1958) can also be understood as an
effect algebra. For example, ifM is a maximal set of mutually commuting effects
on a separable Hilbert spaceH , then M can be converted into an MV-algebra:
There is a system of Borel measurable functionsfA : [0, 1]→ [0, 1], and a fixed
effect operatorA0 ∈ M such thatA = fA(A0). The MV-operations onM are then
defined byA⊕ B = (max{ fA + fB, 1})(A0). A′ = I − A, and moreover, we can
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define in a natural way the productA · B of A and B via A · B := ( fA · fB)(A),
A, B ∈ M, where fA · fB is a usual product of functionsfA and fB.

Inspired by that, in the present note we introduce product effect algebras.
We use similar notions for MV-algebras that were studied in Dvureˇcenskij and
Riečan (1999) and Di Nola and Dvureˇcenskij (2001). We show that every product
effect algebra with the Riesz decomposition property (RDP) is isomorphic with
the interval in an Abelian unital interpolation po-ring (Section 2). We give some
examples of products, including the product on perfect effect algebras (Section 3).
In Section 4, we show that the category of product effect algebras with the RDP
is categorically equivalent with the category of Abelian unital interpolation po-
groups. Finally, we show that every product effect algebra with the RDP and with
1 as a product unity is a subdirect product of antilattice product effect algebras
with the RDP (Section 5).

2. PRODUCT EFFECT ALGEBRAS

An effect algebrais a partial algebraE = (E;+, 0, 1) with a partially defined
operation+ and two constant elements 0 and 1 such that, for alla, b, c ∈ E,

(i) a+ b is defined inE iff b+ a is defined, and in such the casea+ b =
b+ a;

(ii) a+ b, (a+ b)+ c are defined iffb+ c anda+ (b+ c) are defined, and
in such case (a+ b)+ c = a+ (b+ c);

(iii) for any a ∈ E, there exists a unique elementa′ ∈ E such thata+ a′ = 1;
and

(iv) if a+ 1 is defined inE, thena = 0.

If we definea ≤ b iff there exists an elementc ∈ E such thata+ c = b, then
≤ is a partial ordering, and we writec := b− a.

Let a be any element of an effect algebraE and n an integer (n ≥ 0). We
define recurrently

0a := 0, 1a = a, (n+ 1)a = na+ a, n ≥ 1,

supposing thatna andna+ a are defined inE.
For example, if (G, u) is an Abelian unital po-group with a strong unitu,2 and

if 0(G, u) := {g ∈ G : 0≤ g ≤ u} is endowed with the restriction of the group
addition+, then (0(G, u);+, 0,u) is an effect algebra. More about effect algebras
can be found in Dvureˇcenskij and Pulmannov´a (2000).

Let E and F be two effect algebras. A mappingh : E→ F is said to be
a homomorphismif (i) h(a+ b) = h(a)+ h(b) whenevera+ b is defined inE,

2 An elementu ∈ G+ is said to be astrong unitfor a po-groupG, if given an elementg ∈ G, there is
an integern ≥ 1 such that−nu≤ g ≤ nu.
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and (ii) h(1)= 1. A bijective homomorphismh such thath−1 is homomorphism
is said to be anisomorphismof E andF .

A product on an effect algebraE = (E;+, 0, 1) is any total binary
operation· on E such that, for alla, b, c ∈ E, the following holds: Ifa+ b is
defined inE, thena · c+ b · c andc · a+ c · b exist in E and

(a+ b) · c = a · c+ b · c,

c · (a+ b) = c · a+ c · b,

and we say thatE with a product· is a product effect algebra, and we write
E = (E;+, ·, 0, 1). An elementu of a product effect algebraE is said to be a
unity, if a · u = u · a = a for anya ∈ E.

A product· on E is

(i) associativeif (a · b) · c = a · (b · c), a, b, c ∈ E;
(ii) commutativeif a · b = b · a, a, b ∈ E.

It is worth saying that if· is a product onE, then

(iii) a · 0= 0= 0 · a;
(iv) if a ≤ b, then for anyc ∈ E, a · c ≤ b · c andc · a ≤ c · b.

Property (iii) follows easily from the following:a · 0= a · (0+ 0)= a · 0+
a · 0, and the cancellation property givesa · 0= 0. Similarly, 0· a = 0.

We recall that every effect algebraE possesses at least one commutative and
associative product, namely thezeroproduct, i.e.a · b = 0 for all a, b ∈ E.

We recall that apo-ring is a ring (R;+, ·, 0) such that (i) (R;+, 0) is an
additive Abelian po-group, andc · a ≥ 0 anda · a ≥ 0 for anyc, a ≥ 0. If u is a
strong unit forR, i.e., for anya∈ R there is an integern ≥ 1 such thata ≤ nu,
and ifu · u ≤ u, then the effect algebra

E = 0(R, u)

is a product effect algebra with the product·, which is the restriction of the ring
product· to E × E; the product· is commutative or associative on0(R, u) when-
ever so is· on R.

For example, if (R;+, ·, 0) is the ring of the real numbers, then the standard
interval [0, 1] := 0(R, 1) is a product effect algebra.

We say that an effect algebraE satisfies (i) theRiesz interpolation property
(RIP), if, for all x1, x2, y1, y2 in E, xi ≤ yj for all i , j implies there exists an
elementz ∈ E such thatxi ≤ z≤ yj for all i , j ; (ii) the Riesz decomposition
property(RDP), if x ≤ y1+ y2 implies that there exist two elementsx1, x2 with
x1 ≤ y1 andx2 ≤ y2 such thatx = x1+ x2.

We recall that (1) ifE is a lattice, thenE has trivially the RIP; the con-
verse is not true as we see below. (2)E has the RDP iff (Dvureˇcenskij and
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Pulmannov´a, 2000, Lemma 1.7.5),x1+ x2 = y1+ y2 implies there exist four
elements c11, c12, c21, c22 ∈ E such that x1 = c11+ c12, x2 = c21+ c22, y1 =
c11+ c21, and y2 = c12+ c22. (3) the RDP implies the RIP, but the converse is
not true (e.g. ifE = L(H ), the system of all closed subspaces of a Hilbert space
H , thenE is a complete lattice but without the RDP). On the other hand, every
finite poset with the RIP is a lattice.

We recall that a poset (E;≤) is anantilattice if only comparable elements
of E have a supremum (infimum). It is clear that any linearly ordered poset is an
antilattice and every finite effect algebra with the RIP is a lattice.

There exists an effect algebra with RIP which is not a lattice:

Example 2.1. Let G be the additive groupR2 with the positive cone of all (x, y)
such that eitherx = y = 0 orx > 0 andy > 0. Thenu = (1, 1) is a strong unit for
G. The effect algebraE = 0(G, u) is an antilattice having the RIP and the RDP
but E is not a lattice. Moreover, if we define (x1, y1) · (x2, y2) := (x1 · x2, y1 · y2),
for (x1, y1), (x2, y2) ∈ E, then · is a commutative and associative product onE
and with unityu.

A partially ordered Abelian group (G;+, 0) is said to satisfy the RDP pro-
vided, givenx, y1, y2 in G+ such thatx ≤ y1+ y2, there existx1, x2 in G+

such thatx = x1+ x2 and xj ≤ yj for each j . This condition is equivalent to
that by Goodearl (1986, proposition 2.1) with the following two equivalent
conditions:

(a) Givenx1, x2, y1, y2 in G such thatxi ≤ yj for all i , j , there existsz in G
such thatxi ≤ z≤ yj for all i , j .

(b) Givenx1, x2, y1, y2 in G+ such thatx1+ x2 = y1+ y2, there existz11,
z12, z21, z22 in G+ such thatxi = zi 1+ zi 2 for eachi andyj = z1 j + z2 j

for each j .

According to Goodearl (1986), a groupG with the RDP is said to be theinterpo-
lation group.

It is clear that if (G, u) is a unital interpolation group, thenE = 0(G, u) is
with the RDP.

We recall that by auniversal groupfor an effect algebraE we mean a
pair (G, γ ) consisting of an additive Abelian groupG and a G-valued
measureγ : E→ G (i.e., γ (a+ b) = γ (a)+ γ (b) whenevera+ b is defined
in E) such that the following conditions hold: (i)γ (E) generatesG. (ii) If H
is an additive Abelian group andφ : E→ H is an H -valued measure, then
there is a group homomorphismφ∗ : G→ H such thatφ = φ∗ ◦ γ . Accord-
ing to Foulis and Bennett (1994), every effect algebra possesses a universal
group.
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Ravindran (1996) (Dvureˇcenskij and Pulmannov´a, 2000, Theorem 1.17.17)
proved the following important result.

Theorem 2.2. Let E be an effect algebra with theRDP. Then there exists a unital
interpolation group(G, u) with a strong unit u such that0(G, u) is isomorphic
with E, and there is a G-valued injective measureγ such that(G, γ ) is a universal
group for E.

In Dvurečenskij (Theorem 5.8) we have proved that the category of effect
algebras with the RDP is categorically equivalent to the category of unital Abelian
interpolation po-groups: LetEARDP be the category of effect algebras with the
RDP whose objects are effect algebras and morphisms are homomorphisms of
effect algebras, and letUIG be the category of unital interpolation po-groups
(G, u) with a fixed strong unitu and whose morphisms are homomorphisms of
unital po-groups, i.e., positive homomorphisms of unital po-groups that preserve
fixed strong units.

Theorem 2.3. The mapping0 : UIG → EARDP defines the categorical equiv-
alence of the categoryUIG of unital interpolation po-groups and the category of
effect algebras with theRDP.

In addition, suppose that h: 0(G, u)→ 0(H, v) is a homomorphism of
effect algebras with theRDP, then there is a unique homomorphism f: (G, u)→
(H, v) of unital po-groups such that h= 0( f ), and

(i) if h is surjective, so is f;
(ii) if h is injective, so is f.

We now present a crucial result for our investigation.

Theorem 2.4. Let (E;+, ·, 0, 1) be a product effect algebra with theRDP. Then
there exists a unique (up to isomorphism) unital po-ring (R, u) satisfying the
RDPwith the product. and with u· u ≤ u such that E∼= 0(R, u) andφ(a · b) =
φ(a) · φ(b). whereφ is an isomorphism of E onto0(R, u) preserving the product.

If · is commutative or associative, so is· on R.

Proof: Let E be an effect algebra with a product. According to Theorem 2.2,
there is a unital group (R, u) with a strong unitu satisfying the RDP, and an
isomorphismφ from E onto0(R, u). We can define the product· on0(R, u) as
follows

φ(a) · φ(b) := φ(a · b), a, b ∈ E.
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Because0(R, u) generates the positive coneR+ of R, φ preserves all existing+
in R, and we see that· is a product on0(R, u).

Giveng ∈ R+ there exista1, . . . , an ∈ E such thatg =∑n
i=1 φ(ai). For any

φ(c), wherec ∈ E, we define

g · φ(c) = φ(a1 · c)+ · · · + φ(an · c). (2.1)

We claim that (2.1) is defined unambiguously. Indeed, ifg =∑m
j=1 φ(bj ), for

someb1, . . . , bm ∈ E, because of the RDP, there exist elementsci j ∈ E such that
ai =

∑m
j=1 ci j andbj =

∑n
i=1 ci j for all i , 1≤ i ≤ n, and all j , 1≤ j ≤ m. Then

n∑
i=1

φ(ai · c) =
n∑

i=1

φ

((
m∑

j=1

ci j

)
· c
)
=

n∑
i=1

φ

(
m∑

j=1

(ci j · c)

)

=
n∑

i=1

m∑
j=1

φ(ci j · c) =
m∑

j=1

n∑
i=1

φ(ci j · c)

=
m∑

j=1

φ

(
n∑

i=1

ci j · c
)
=

m∑
j=1

φ

((
n∑

i=1

ci j

)
· c
)

=
m∑

j=1

φ(bj · c),

which proves that· on R+ × 0(R, u) is correct. We now extend· to R× 0(R, u)
as follows: Ifg = g1− g2, g1, g2 ∈ R+, then

g · φ(c) := g1 · φ(c)− g2 · φ(c).

Since ifg1− g2 = h1− h2 for gi , hi ∈ R+, i = 1, 2, theng1+ h2 = h1+ g2, by
(2.1) we have

(g1+ h2) · φ(c) = (h1+ g2) · φ(c),

g1 · φ(c)+ h2 · φ(c) = h1 · φ(c)+ g2 · φ(c),

g1 · φ(c)− g2 · φ(c) = h1 · φ(c)+ h2 · φ(c).

Now let c ∈ R+. Thenc = φ(c1)+ . . .+ φ(cs), wherect ∈ M, t = 1, . . . , s. We
extend· to R× R+ as follows

g · c :=
s∑

t=1

g · φ(ct ), g ∈ G.
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If c =∑ν
w=1 φ(dw), using the RDP, we have as above

s∑
t=1

g · φ(ct ) =
ν∑

w=1

g · φ(dw).

It is clear that the “multiplication”· can be extended to the wholeR× R: If
c = c1− c2, wherec1, c2 ∈ R+, let

g · c := g · c1− g · c2.

It is evident that ifg, h ∈ R+, then g · h ∈ R+, andu · u ≤ u, and because of
property (ii), · is associative onR, so that (R;+, ·, 0) is a po-ring with a strong
unit u, which proves the theorem.

The commutativity or associativity of the product on the ringR follows from
its construction. ¤

We present now some effect algebras that admit products.

Proposition 2.5. If e is unity of a product effect algebra E, then e= 1. Moreover,
1 is unity for· if and only if, for any a∈ E, a · 1≥ a and1 · a ≥ a.

Proof: Let e be unity for the product. Then 1· 1≤ 1= 1 · e≤ 1 · 1, which
proves 1· 1= 1. Let a ∈ E. Thena · 1≥ a · e= a and 1· a ≥ e · a = a. In ad-
dition, a+ a′ = 1= 1 · 1= (a+ a′) · 1= a · 1+ a′ · 1≥ a+ a′, which entails
a · 1= a. By symmetry, we have 1· a = a for any a ∈ E, and in addition 1=
1 · e= e.

Now assume that for anya ∈ E, a · 1≥ a and 1· a ≥ a. Then 1= a+
a′ ≤ a · 1+ a′ · 1= (a+ a′) · 1= 1 · 1≤ 1, which proves that 1 is unity
for · on E. ¤

Proposition 2.6. A finite effect algebra E, which is a lattice and with theRDP,
admits a product· such that a· 1= a = 1 · a for any a∈ E if and only if E
is a Boolean algebra, i.e., a∨ a′ = 1 for any a∈ E. If this is the case, then
a · b = a ∧ b ∈ E.

Proof: Every lattice effect algebra with the RDP can be converted into an MV-
algebra. Therefore, the assertion follows from Dvureˇcenskij and Pulmannov´a
(2000, Theorem 5.3.17). ¤

3. PRODUCT ON PERFECT EFFECT ALGEBRAS

In the present section, we show that we can even define a product on perfect ef-
fect algebras. Such effect algebras were introduced and studied in
Dvurečenskij.
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Let G be a directed Abelian po-group and define the lexicographical product

G(Z) := Z×lex G, (3.1)

whereZ is the group of all integers. Then the element (1, 0) is a strong unit in the
po-groupG(Z) and

E(G) := 0(G(Z), (1, 0)) (3.2)

is an effect algebra. Every elementa ∈ E(G) is of the form eithera = (1,−g)
or a = (0, g), whereg ∈ G+. In addition, if G is a directed interpolation group,
thenG(Z) is an interpolation group (Goodearl, 1986, corrolary 2.12) andE(G)
satisfies the RIP.

An ideal of an effect algebraE is a nonempty subsetI of E such that (i)
x ∈ E, y ∈ I , x ≤ y imply x ∈ I , and (ii) if it x, y ∈ I andx + y is defined in
E, thenx + y ∈ I . An ideal I is said to be theRiesz idealif x ∈ I , a, b ∈ E, and
x ≤ a+ b, there exista1, b1 ∈ I such thatx ≤ a1+ b1 anda1 ≤ a andb1 ≤ b.

For example, ifE is with the RDP, then any ideal ofE is Riesz.
A proper idealI of an effect algebraE is said to bemaximalif it is not a

proper subset of another proper ideal ofE. By Zorn’s lemmaE possesses at least
one maximal ideal, and letM(E) be the set of all maximal ideals ofE. We define
theradical of E, Rad(E), via

Rad(E) = ∩{I : I ∈M(E)}.

An elementa is said to beinfinitesimalif na is defined inE for any integer
n ≥ 1, and denote by Infinit(E) the set of all infinitesimals ofE. Then (i) 0∈
Infinit(E), (ii) if b ∈ E, a ∈ Infinit(E), andb ≤ a, thenb ∈ Infinit(E), and (iii) 1
6∈ Infinit(E). By Proposition 4.1 of Dvureˇcenskij if E is an effect algebra satisfying
the RDP, then

Infinit(E) ⊆ Rad(E). (3.3)

Since it can happen that in (3.3) we have the proper inclusion, according to
Dvurečenskij, an effect algebraE with the RDP is said to have theRad-propertyif
in (3.3) we have the equality. In Dvureˇcenskij, we have introduced perfect effect al-
gebras: We say that an effect algebraE with the Rad-property isperfectif, for any
elementa ∈ E, eithera ∈ Rad(E) or a′ ∈ Rad(E). According to Dvureˇcenskij,
(Proposition 5.3), every perfect effect algebraE is of the form (3.2) for some
directed Abelian interpolation po-groupG.

We say thatG+ of a po-groupG is Archimedeanif, for somea, b ∈ G+ with
na≤ b for anyn ≥ 1, a = 0.
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Proposition 3.1. Let E be a perfect effect algebra and define a binary operation.
as follows. For a, b ∈ Rad(E), let

a · b = 0,

a · b′ = a,

a′ · b = b,

a′ · b′ = (a+ b)′. (3.4)

Then· is a commutative product on E such that a· 1= a = 1 · a for any a∈ E.

Let E= 0(Z×lex G, (1, 0)) and let G+ be Archimedean. Then on E there
is a unique product· such that a· 1= a = 1 · a for any a∈ E; this product is
defined by (3.4).

Proof: Since Rad(E) ∩ Rad′(E) = ∅, we see that· is correctly defined by (3.4),
and it is easy to verify that it is a product in question onE.

Leta andb be two element of Rad(E). Thennb is defined inE for any integer
n ≥ 1, and by Dvureˇcenskij, (Proposition 5.1), we have

a = a · 1= a · ((nb)+ (nb)′) = n(a · b)+ a · (nb)′ ≥ n(a · b).

The Archimedeanicity ofG+ entails thata · b = 0. Hencea = a · b+ a · b′ =
a.b′. Similarly a = (b′ · a)+ (b · a) = b′ · a, anda′ = a′ · b′ + a′ · b′ = a′ · b′ +
b, which givesa′ · b′ = (a+ b)′. ¤

Proposition 3.2.
Let E be an effect algebra with theRDPsatisfying the Rad-property such that

Rad(E) is Archimedean, i.e., if na≤ b for any n≥ 1 and for some b∈ Rad(E),
then a= 0. If · is a product on E such that a· 1= a = 1 · a for any a∈ E, then,
for any a, b ∈ Rad(E), (3.4)holds.

Proof: The first three identities follow the same ideas as the proof of Proposition
3.1. For the last one we have

1= (a+ a′) · (b+ b′) = a · b+ a · b′ + a′ · b+ a′ · b′ = (a+ b)+ (a′ · b′),
which entails thata′ · b′ = (a+ b)′. ¤

Remark 3.3. It is worth recalling that if an effect algebraE satisfying the RDP
and the Rad-property has an Archimedean radical, then there is a unique binary
operation·: (Rad(E) ∪ Rad′(E))× (Rad(E) ∪ Rad′(E))→ Rad(E) ∪ Rad(E)′,
which is commutative and associative and for alla, b, c ∈ Rad(E) ∪ Rad(E) we
have (a+ b) · c = a · c+ b · c, a · 1= a; it is defined via (3.4). On the other hand
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it does not mean that· can be extended to a product on the wholeE, satisfy-
ing a · 1= a = 1 · a for any a ∈ E. for example, ifE is a finite lattice, then
Rad(E) = {0}, and · can be extended iffE is a Boolean algebra (Proposition
2.6). An extension of· is possible, e.g., ifE is a perfect effect algebra with an
Archimedean radical (Proposition 3.1).

4. PRODUCT EFFECT ALGEBRAS AND CATEGORICAL
EQUIVALENCE

In this section, we show that the category of product effect algebras with the
RDP is categorically equivalent with the category of Abelian unital interpolation
po-rings.

Denote byPRODEA the category of product effect algebras, i.e., its ob-
jects are product effect algebras, and morphisms are homomorphisms of effect
algebras also preserving. We denote byR the category of associative unital in-
terpolation po-rings (R, u) with a distinguished strong unitu such thatu · u ≤ u,
and its morphisms are homomorphisms of po-groups that preserve. and the distin-
guished strong units. We denote by0R a map fromR intoPRODEF defined by
0R((R;+, ·, 0,≤, u)) := (0(R, u);+, ·, 0,u), and0R( f ) := f | 0(R, u).

Proposition 4.1. 0R is a faithful and full functor fromR toPRODEA.

Proof: Let h1 and h2 be two morphisms from (R;+, ·, 0,≤, u) into (R′;+,
·, 0,≤, u′) such that0R(h1) = 0R(h2). Thenh1(a) = h2(a) for anya ∈ 0(R, u).
Since0(R, u) generatesR+ and R, we have thath1(g) = h2(g) for any g ∈ R,
which proves that0R is faithful.

To prove that0R is a full functor, suppose thatf is a morphism from0(R, u)
into 0(R′, u′). Since0(R, u) generatesR, due to the RDP,f can be uniquely
extended to a group homomorphism̂f from R into R′.

We show thatf̂ preserves the product· in R.
Let a, b ∈ R+ There exista1, . . . , an, b1, . . . , bm ∈ 0(R, u) such thata =

a1+ · · · + an and b = b1+ · · · + bm. Then a · b =∑n
i=1

∑m
j=1 ai · bj and ai ·

bj ∈ 0(R, u). Calculate f̂ (a · b) =∑n
i=1

∑m
i=1 f̂ (ai · bj ) =

∑n
i=1

∑m
j=1 f̂ (ai ) ·

f̂ (bj ) =
(∑n

i=1 f̂ (ai )
) · (∑m

j=1 f̂ (bj )
)

f̂ (a) · f̂ (b).
If now a, b ∈ R, thena = a1− a2 andb = b1− b2, wherea1, a2, b1, b2 ∈

R+. Then f̂ (a · b) = f̂ (a1 · b1− a1 · b2− a2 · b1+ a2 · b2) = f̂ (a1 · b1)− f̂ (a1 ·
b2)− f̂ (a2 · b1)+ f̂ (a2 · b2) = f̂ (a1) · f̂ (b1)− f̂ (a1) · f̂ (b2)− f̂ (a2) · f̂ (b1)+
f̂ (a2) · f̂ (b2) = f̂ (a) · f̂ (b).

Consequently, we have proved thatf̂ is a morphism from (R;+, ·, 0,≤, u)
into (R′;+, ·, 0,≤, u′) such that0R( f̂ ) = f. ¤
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We are now ready to present the main statement of the present section.

Theorem 4.2. The functor0R defines a categorical equivalence of the category
R of unital associative interpolation po-rings with a strong unit u such that u· u ≤
u and the categoryPRODEA of product effect algebras.

Proof: According to MacLane (1971, Theorem IV.4.1), to prove that0R is an
equivalence of the categories in question, it is necessary and sufficient to show
that0R is faithful and full, and each objectE from PRODEA is isomorphic to
0R((R;+, ·, 0,≤, u)) for some object (R;+, ·, 0,≤, u) inR.

According to Proposition 4.1,0R is faithful and full, and by Theorem 2.4,
there exists an object (R;+, ·, 0,≤, u) in R such that0R((R;+, ·, 0,≤, u)) is
isomorphic toE. This proves the theorem. ¤

5. SUBDIRECT PRODUCT OF PRODUCT EFFECT ALGEBRAS

In the present section, we show that every product effect algebra with the
RDP and with 1 as a product unity is a subdirect product of antilattice product
effect algebras with the RDP. To show that, we give some results on ideals and
quotient effect algebras.

Let · be a product on an effect algebraE. We say that an· ideal I of E is an·
idealof E if a ∈ I andb ∈ E entaila · b ∈ I andb · a ∈ I . If 1 is a product unity,
then every ideal ofE is a· ideal of E.

Let P be a proper ideal ofE. We define a relation∼P on E viaa ∼P b iff a−
e= b− f for somee, f ∈ P. According to Dvureˇcenskij and Pulmannov´a (2000,
Section 3.1.2). we have that∼P is an equivalence such that (i)a+ b ∈ E, a1+
b1 ∈ E, a ∼P a1, b ∼P b1 imply (a+ b) ∼P (a1+ b1), (ii) a ∼P b impliesa′ ∼P

b′, (iii) a+ b ∈ E, c ∼P a imply there exists an elementd ∈ E such thatd ∼P

b andd + c ∈ E, (iv) a+ b, a1+ b1 ∈ E, a1 ∼P, a(a1+ b1) ∼P (a+ b) imply
b1 ∼P b. If we definea/P := [a] := [a]P := {b ∈ E : b ∼P a}, then E/P :=
{[a]P : a ∈ E} is an effect algebra, where [a] + [b] = [c] iff there exist a1 ∈
[a], b1 ∈ [b], c1 ∈ [c] such thata1+ b1 = c1. As the constant elements inE/P
we take [0] and [1].

We recall that

[a]P ≤ [b]P in E/P ⇔ there existsa1 ∈ [a]P such thata1 ≤ b. (5.1)

We say that an idealP of an effect algebraE with the RDP isprime if, for
all idealsI andJ of E, I ∩ J ⊆ P implies I ⊆ P or J ⊆ P. We denote byP(E)
the set of all prime ideals ofE.

Let a be a nonzero element ofE. By Zorn’s lemma, there exists an idealV
not containing a and which is maximal with respect to this property. Such an ideal
is said to be avalueof a in E.
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According to Dvureˇcenskij, (i) every value is a prime ideal ofE, (ii) E/P is
an effect algebra with the RDP wheneverP is a proper ideal ofE with the RDP,
and (iii) E/P is an antilattice effect algebra ifP is prime.

Proposition 5.1. Let P be a proper ideal of a product effect algebra(E;+, ·, 0, 1)
with theRDP. If a1 ∼P a2 and b1 ∼P b2, then a1 · b1 ∼P a2 · b2. In addition, E/P
is a product effect algebra with the induced product· defined via

[a]P · [b]P := [a · b]P, a, b ∈ E, (5.2)

and the canonical mapping f: E→ E/P given by f(a) = [a]P, a ∈ E, is a
surjective homomorphism preserving all existing joins, meets, and the product
in E.

Proof: There aree, f, u, v ∈ P such thata1− e= a2− f andb1− u = b2− v.
Then

(a1− e) · (b1− u) = (a2− f ) · (b2− v),

a1 · (b1− u)− e · (b1− u) = a2 · (b2− v)− f · (b2− v),

a1 · b1(a1 · u+ e · (b1− u)) = a2 · b2− (a2 · v + f · (b2− v)).

Sincex := a1 · u+ e · (b1− u) ∈ P andy := a2 · v + f · (b2− v) ∈ P, we have
a1 · b1− x = a2 · b2− y, i.e.,a1 · b1 ∼P a2 · b2. Therefore, the product onE/P
defined by (5.2) is a product in question.

The rest is now clear; see also Dvureˇcenskij (Proposition 6.9). ¤

Let {Ei }i∈I be an indexed system of effect algebras. The Cartesian product∏
i∈I Ei can be organized into an effect algebra with the partial addition defined

by coordinates. EachEi is with the RDP iff so is
∏

i Ei . If every Ei is a product
effect algebra, then so is

∏
i Ei , where the product is defined by coordinates.

We say that an effect algebra is asubdirect productof effect algebras{Ei }i∈I

if there is an injective homomorphismf : E→∏
i∈I Ei such that, for every

j ∈ I π j , ◦ f is a surjective homomorphism fromE onto Ej , whereπ j is the j th
projection of

∏
i Ei ontoEj . In an analogical manner we define a subdirect product

of product effect algebras assuming that the functionf preserves also the product
in E, and everyπ j ◦ f is a surjective homomorphism of effect algebras preserving
product.

Theorem 5.2. Every product effect algebra(E;+, ·, 0, 1)with theRDPhaving1
as a product unity is a subdirect product of antilattice product effect algebras with
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theRDP. In addition, we can find an injective homomorphism into the subdirect
product that preserves all existing meets, joins, and the product in E.

Proof: According to Dvureˇcenskij (Theorem 7.2), every effect algebra with the
RDP is a subdirect product of antillatice effect algebras{E/P : P ∈ P(E), P 6=
E}, and each of them is with the RDP. The corresponding injective mapping
f : E→∏

P E/P is defined viaf (a) = ([a]P)P∈P(E), a ∈ E.
According to Proposition 5.1, everyE/P is a product effect algebra. In addi-

tion, the mappingf preserves all existing meets, joins (see Dvureˇcenskij, Theorem
7.2]), and the product inE, andπP ◦ f is a surjective homomorphism fromE onto
E/P preserving. ¤
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Kôpka, F. and Chovanec, F. (1994). D-posets,Math. Slovaca44, 21–34.
MacLane, S. (1971).Categories for the Working Mathematician, Springer, New York.
Ravindran, K. (1996).On a Structure Theory of Effect Algebras, Ph. D. Thesis, Kansas State University,

Manhattan, Kansas.


